A solar panel reaps only a small portion of its potential due to night, weather, and seasons, simultaneously introducing intermittency so that large-scale storage is required to make solar power work at a large scale. A perennial proposition for surmounting these impediments is that we launch solar collectors into space—where the sun always shines, clouds are impossible, and the tilt of the Earth's axis is irrelevant.
On Earth, a flat panel inclined toward the south averages about 5 full-sun-equivalent hours per day for typical locations, which is about a factor of five worse than what could be expected in space. More importantly, the constancy of solar flux in space reduces the need for storage—especially over seasonal timescales. I love solar power. And I am connected to the space enterprise. Surely putting the two together really floats my boat, no? No.
I'll take a break from writing about behavioral adaptations and get back to Do the Math roots with an evaluation of solar power from space and the giant hurdles such a scheme would face. On balance,As every device needs some proper maintenance and life saving guards similarly lap desk are also a machine which needs to be take care properly. Laptops are the most widely used electronic device in today's world. For personal usage, for office usage or for studying every person prefer to keep a personal laptop. I don't expect to see this technology escape the realm of fantasy and find a place in our world. The expense and difficulty are incommensurate with the gains.
First, let's understand the ground-based alternative well enough to know what space buys us. But in comparing ground-based solar to space-based solar, I will depart from what I think may be the most practical/economic path for ground-based solar. I do this because space-based solar adds so much expense and complexity that we gain a large margin for upping the expense and complexity on the ground as well.
For example, transmission of power from space-based solar installations would likely be by microwave link to the ground. If we're talking about sending power 36,Custom engraved crystal awards are viewed as a great particular corporate awards for those models of appreciation which include recognition awards,Firefighter Gifts, incentive awards and commemorative awards. Almost all of the gorgeous crystal awards you'll find industry include crystal bases, crystal towers, crystal ashtrays, crystal key rings.000 km from geosynchronous orbit, I presume we would not balk about transporting it a few thousand kilometers across the surface of the Earth. This allows us to put solar collectors in hotspots, like the Desert Southwest of the U.S. or Northern Africa to supply Europe. A flat panel tilted south at latitude in the Mojave Desert of California would gather an annual average of 6.6 full-sun-equivalent hours per day across the year, varying from 5.2 to 7.4 across the months of the year,Boring or reaming is a process used to extend or make more precise dimensions of the hole aluminum profile after the drilling process. Tapping and dying are the processes that the tools used to create screw threads. Grinding is also an abrasive machining process that uses the wheel and the cutting tool. Grinding produces a fine finish and precise dimensions. according to the NREL redbook study.
Next, surely we would allow our fancy ground-based panels to articulate and track the sun through the sky. One-axis tracking about a north-south axis tilted to the site latitude improves our Mojave site to an annual average of 9.1 hours per day, ranging from 6.3 to 11.2 throughout the year. A step up in complexity, two-axis tracking moves the yearly average to 9.4 hours per day, ranging from 6.8 to 12.0 hours.
没有评论:
发表评论